CVEN 305 Topic Mechanics of Materials - Special Case of 3D Stress Maximam Shearing Stress Absolute 8 min max (3) × (2) X Max PLANE STRESS max 0

•	~	/F &	1 205
	(\	/ L N	1 305
		/ L ! \	

Mechanics of Materials

Topic _____

Date 4-8-2020

SUPER- POSITION 3 kri 2 kri Avg = $\frac{\sigma_x + \sigma_y}{2}$ =	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{2^{ks_i}}{4}$ $\frac{4}{4}$ $\frac{7}{4}$
Radius = $\sqrt{\frac{o_x}{x}}$	$(-\frac{\sigma_y}{2})^2 + (\frac{\sigma_y}{2})^2 = \sqrt{4^2 + \frac{\sigma_y}{2}}$	$\frac{1}{3} = 5$

CVEN 305
Mechanics of Materials

Topic _____

Date 4-8-2026 Page 5 of 9

PRESSURE VESSELS	$\sigma_y = \frac{P_r}{Hoop/circum/hotdog} = \frac{P_r}{+}$
A Dox	$\sigma_{x} = \sigma_{long} = \frac{Pr}{2t}$
+	

Do not round intermediate ententations. Orre your lines another to unde distintions insured

A pressure vessel of 8-in. inner diameter and 0.25-in. wall thickness is fabricated from a 4-ft section of spirally-welded pipe *AB* and is equipped with two rigid end plates. The gage pressure inside the vessel is 200 psi and 12-kip centric axial forces *P* and *P'* are applied to the end plates. Determine the normal stress perpendicular to the weld.

$$\sigma_{x'} =$$
ksi

POS. SIGN. CONV

$$\sigma_{p} = \frac{P}{A} = \frac{12000}{I(8.5"^{2} - 8"^{2})} = 1852 \text{ BI}$$

$$\sigma_{long} = \frac{\rho_R}{2+} = \frac{(200\,\text{Pri})(4")}{2(0.25")} = |600\,\text{PSI}$$

$$V_{00}p^{2} = \frac{Pr}{t} = \frac{(200 \, Psi)(4")}{(0.25")} = 3200 \, Psj$$

CVEN 305	Topic	Topic				Date 4-8-2020		
Mechanics of Materi					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Page 9	_of_9	
PROP. OFIEN	tep Sketcy							
152	109.5 PST							
	252 P	5I						
· M								
	3200 PSI							